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1. Introduction. 

The primary purpose of this paper is to develop and anal.yze 

same practtcal numerical methods for handling weakly singular quadra

ture; that is, for fIf(t)dt where f is Lebesgue integrable on I 

(so called "improper integrals"). We also e~tend this developllent and 

analysis to the case where some derivative of t is Lebesgue integrable 

and has finitely many unbounded points on I. We shall be particularly 

interested in obtaining "best" possible order estimates for compound 

quadratures. 

It is known (although possibly not well known) that Peano's 

theorem can be applied to analyze the error in "low continuity" numeri

cal quadrature. For example f~tl/2dt approximated by the trapezoid 

rule: 

Let h >0, Nh = T, E(T) = error. Then 

By Peano's theorem, c.f. e.g. Sard [1, p. 14] 

where K(t) = (j + 1/2)h-t on jh ~ t < (j+l)h. Apply the Minkowski 

inequality with l/p + l/q = 1 and 1 ~ q < 21 
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(Clearly It -1/21 q is integrable for 1 =i q < 2.) How use the defini

tion of K(t) I 

l~iK(t)IPdt = N Iglh/2 - tlPdt • 2N 1~2tPdt 

= (2N/(P+l»(h/2)p+l = (bN/(p+l})(h/2)P 

= (T/(p+l)}(h/2)P. 

Therefore 1IK1IL(p) = (T/(P+l)}1/P(h/2). Since 

then 

l'E(T) \ ~ (1/4)(T/(p+l)} 1/P{2/(2_q)} 1/~.l/q - 1/2 

= Tl / 2(P+l)-1/P{2/(2_q)}1/q(h/4). 

One could proceed further and analyze the constant 

k(q) = (P+l)-1/P{2/(2_q»)1/q 

subject to lip + l/q = 1, l:! q < 2. One can conclude (by very 
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, 
tedious manipulations) that k(q) for 1 S q < 2 takes on its minimum 

at q .. 1. In this case k(l) = 2. Hence the minimum. estimate on 

IE(T)' by this application of the Minkowski inequality to Peano's 

theorem is 

I E(T)I ~ ( .[T h)/2. 

Although this estimate is optimal (in the above sense), it is overly 

pessimistic, because one can show that E(T) • tJ(h'3/
2
). This can be 

seen in Example 2 in Section '3 below. Indeed with a little extra care 

one can sharpen the result in Example 2 to show that 

This then clearly demonstrates that applying the Minkowski inequality 

to Peano's theorem may possibly yield substantially less information 

than is desirable. 

In Section 2 we shall show how Peano's theorem and the Min-

kowski inequality can be applied in general to singular quadrature ques-

tions. In particular we generalize the first type of analysis presented 

JT 1/2 above for ot dt where E(T) = tJ(h). In Section '3 we shall refine 

our analysis to obtain better information. In particular we generalize 

JT 1/2 the second type of analysis stated above fortbe case ot dt where 

E(T) .. tJ( h'3/2) • 
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The dra,ibacks for the usual Minkowski-peano approach becane 

IT -1/2 even more exaggerated for ot dt where the integrand itself has 

a weak singularity. Since the hypotheses of Peanots theorem requires 

absolute continuity and since f(t). t-l !2 is not even continuous 

at zero, then Peanots theorem cannot be applied directly. In Section 

4 we show how this situation can be remedied. We propose a simple 

modification of the usual compound quadrature rule which w~ call the 

method of "avoiding the singularity". We then establish general error 

bounds along with convergence rates for this numerical quadrature of 

weakly singular integrands. 

The use of Peanots theorem to obtain error estimates for 

quadrature of functions with low continuity is known. For example 

Stroud [2] has recently studied certain aspects of this method. Nu-

merical quadrature of singular functions has also been studied. Davis 

and Rabinowitz [3] establish various convergence theorems with interest

ing 11m inf results which were extended by Rabinowitz [4]. Gautschi 

[5] applied same of the work of Rabinowitz and obtained convergence 

theorems for two quadratures of interpolatory type. In none of these 

papers are error bounds explicitly given, although for example the proofs 

in [2] may be used to obtain certain estimates (see [2], line (3.7) and 

the proof of Theorem 3). All of these results require that the inte

grand be monotone in 8 ne1ghborhood of the singularity. Fox [6] gives 

same errur bounds for singular quadratures. His work is very special 

and does not seem to generalize. 



, 
The main results of this paper predict rather slow convergence 

rates for weakly singular numerical quadratures. Various numerical ex-

periments verify these predictions. Moreover there may be no advan-

tage in using a better rule (e.g. Simpson rather than trapazoid), see 

[7, p. 77] for a striking example of this. If one knows enough about 

the integrand, it may be possible to Change variables or ot~erwise to 

eliminate the singularity, see for example [7, pp. 72-73] or [8, pp. 

346-352]. In other cases one might wish to use special numerical 

quadrature methods which are specifically designed for particular sin-

gular integrands. Two examples of such methods are given in Atkinson 

[9, sections 2.1 and 2.2] and Schweikert [10]. 

In Section 5 we apply our results of the earlier sections to 

the question of singular quadrature in the convolution case. This work 

in particular will be used in its full generality by the authors in a 

sequel paper which studies numerical solution of weakly singular Vol-

terra integral equations of the form 

x(t) = f(t) + J~a(t-s)G(X(S»dS (0 ~ t ~ T) 

where f and G are smooth but a(t) may be Singular at t. 0; 

(a(t) .. t- l / 2). 

2. Basic Estimates 

Consider an approximate quadrature rule defined on the stan-

dard interval O:! t ~ 1, 
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(R) 

with error 

E(f,R) • J~f(t)dt - R(f). 

It will always be assumed that the abscissas Xj satisfy the inequall~ 

ties 0 ~ ~ < xl < ••• < xJ '1. In addition we shall assume sane or 

all of the following hypotheses in the sequel: 

(Al) f € Cn~~O,l] where n a 1 is a fixed integer and f(n-l) is 

absolutely continuous on 0 11 t 11 1. 

(A2) E(p,R) = 0 for all polynanials p(t) of degree' n-1. 

(A3) The weights Wj are positive for j. O(l)J. 

(A4) f € <f-~O,T] and f(n-l) is absolutely continuous on [O,T]. 

The symbols j = O(l)J means j. O,l,2, ••• ,J. The integer 

n a 1 in hypotheses (Al) and (A2) are the same fixed value. 

For any subinterval I of the real line let Xz( t) denote 

the characteristic function of the interval I, that is 

Xz(t) • 1 if t € I; • 0 if t J I. 

For our purposes the following special case of Peano' s theorem will suf-

fice, c.:f'. [1, p. 14]. 

• 
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Theorem 1. Assume!h!. ~ (R) together ~ hypotheses (Al) 22. (~). 

Define 

!~ 0' s,t ;i 1 !!2!!!. n !!.~.! integer given!!!. (Al-2). ~!E! 

~ E(f"R) !!l E!. written!!! ~ ~ 

(l) E(f"R) = J~f(n)(S)Kn(S)dS 

where Kn ( s) • -E( f s,R).!.c!!: 0' a S 1. 

The fWlction ~(8) can be explicitly calculated when R 

and n are known. For example if R is the midpoint rule" then J. 0, 

YO = 1 and xO. 1/2. For n. 1 

xl(a) = -8 if 0 ;i 8 <: 1/2j • l-s if 1/2;1 a < 1. 

In the general case 

(2) 

when ~;I a < xk+r If xo > 0 or if' xJ < 1, then similiar formulas 

may be obtained for the intervals 0;1 s < Xo and x J ;I 8 < 1. In 
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particular (2) shows that xn is of class LP(O,l) tor all numbers 

p in the interval l' P '00. Therefore Theorem 1 and the Minkowsk1 

inequality imply the following result. 

Corollary 1. Assume lli. hypotheses 2! Theorem 1. 

Lq(O,l) ~!! IIp + 1/q • 1 ~ 

It ten) € -

~ similiar formulas !2!. ~ cases q. 1 .!!!!!. q. 00. 
In general the calculation ot the LP norm 

(4) 

may be difficult if l' P '00. Since the nor.m 

(4.1) 

is easy to Obtain numerically, t.ben it may be convenient to use the 

estimate IlKuIlL(p)' IlKuIlL(oo)' If tbis is not sufficient, then it is 

possible to obtain a universal estimate under the additional hypotheses 

(A3). 

Corollary 1*. Assume ~ hypotheses ~ Theorem 1. If f(n) € L'o,l) 

and 1/p + 1/ q • 1, !.2!!!. 

"- '" 
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Proof'. On~ the last statement needs f'urthel' proof'. Assumptions (A2) 

and (A3) 1mp~ that L ~-oWj • 1. For k. O(l)J aDd f'or 8 in the 

interval ~ ~ S < Xt+1 equation (2) implles that 

IKn(s)1 ~ 1/nl + E ;-owj/(n-l)I 

~ 1/nl + (r. ~-oWj)/(n-l)1 • (n+l)/nl 

If' Xo > 0 then I ~(sH ~ l/nl S (n+l)/nl in the interval 0 S s < ~. 

Simillarly if' x
J 

< 1 and if' x
J 

~ s < 1 then I Kn(s)1 '(n+l)/nl. Q.E.D. 

These basic results are easily extended to general intervals 

and to canpound rules. Given an interval a ~ t ~ a+B, one can use tbe 

tranAf'ormation t. a+Bt to compute 

For example if' (R) is tbe midpoint rule R( f') • t( 1/2), tben one can 

replace B by b aDd write 

in the usual way. If' (R) 1s Simpson's Rule, tben we think of' B. 2b 

and write 
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Corollary 2. Assume (A2) !! true, 'I , cr-Ir., a+B] azid 1'( n-l) !!. 

absolutely continuous 2!!. a' t 'a+B. !!!!!!!!!h! following state-

ments are true. ---
a. !h!!!:!:2!: E. 1:+BJ'(t)dt - B E ~.oV.1F(a+BX.1) mar ~ written !! 
the form --

!!!!!:!. ~(8) !!.!!!!. tuncti~ gJ.ven !! !heorem 1 ~. 

b. !! F(n) C Lq(a,a+l:),!! l/P + l/q • 1 e!! o 'nIl L(p) 

LP !!.9!!! ~ 'n ~!!!!. interval [0,1] (.!!! (4», !2!!!. 

~., the ---

c. !! ~ addition ~ ~ hypotheses llBted above (13) !!.!!!.2 true, 

then 

Proof. By Theorem 1 above 
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1 ~J 
E • B 10 F(a+Bt)dt - B ~ j-oWjF(a+BXj ) 

l." d
n 

= B 10~(s)(=-nr(a+Ba)}dS 
ds 

= Bn+l 1~(S)F(n)(a+BS)dS 

= Bn/:+B'n(s;a)F(n)(S)dS. 

This proves a. Part b. follows frcm part a. and change of variables 

Part c. follows fran b. since 11'nIlL(p) 1: 11'nIIL(oo) ~ (n+l)/n! Q.E.D. 

Now consider a compounding of the rule R over an interval 

o ~ t ~ T. Let T = NB where B > 0 and where N is an integer 

larger tha..'1 one. If R is canpounded N times over [0, T] then 

(N X R) 

T Let ~(f) = 10f(t)dt - N X R(f) be the error. 

Corollary 3. Suppose (A2) ~ (A4) ~~. Then all of the fol-

lowing statements !E! ~ue: 

a. ~(f) = I~f(n)(t)~(t)dt where ~(t) • xn(t/B - k) on 

kB ~ t < (k+l)B. 

. -:"";:""--' 
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I 
i 
;a 

I 
I 
§ 

I 
~ 

I 



- -;. .. 

b. !! ten) C Lq(O,T), IIp + l/q ... 1 and 1I~IIL(p) is defined as 

in (4), ~ 

c. g in addition (A3) !! true1 ~ 

Proof. Write the error in the form 

and then apply Corollary 2.a: 

Since ~(t) is periodic of period B on 0 ~ t ~ T, then 

Therefore 

1~1~(t)IPdt = N f~lin(t)lPdt ... NB f~Kn(t)IPdt 

= T{II~IIL(p)}p. 

I 
12 
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It' (A3) is true then 1I~IIL(p)' 1I~IIL(ao) '(n+1)/nt Q.E.D. 

1 1/2 Exrunple 1. Consider fot dt approximated by the trapezoid rule. 

.. 

In this case B = h, T • Nh = 1, n = 1 and Kl(s). (1/2)-s on the 

interval 0 ~ s < 1. Therefore 

f~\K1(S)\PdS E f~ll/2 - s\PdS = f~2\1/2 - slPds + fi/2\1/2 - slPds 

= f;!2sPdS + f;!2sPdS • 2-P(p+1) -1. 

Since f'(t) = (2tl / 2)-1 € Lq(O,l) for l' q < 2, then Corollary 

3 implies that 

(5) \ ~(t1/2)i .~ h 2-P(p+1) -l(f~( 2tl / 2) -~t} 

• h(21/ q - P-1(P+l)-1/P(2_q)-1/q} 

for 1 < q < 2. If q. 1, then 

Part c. of Corollary 3 implies an even more pessimistic estimate 

1~(tl/2)1 :i 2h. Section 3 will produce estimates which are tJ(h3/
2
). 
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,. Refined Estimates. 

Definition 1. h. function f !! ~!2 !!! wea!tll singular £! ~ 

\I !!~~!! 

a. \1-1. \Ie f € C{O,T] !! \I. ° 2!:. f € C lO,T] n C O,T] !! \I ~ 1, 

b. !2L ~ € > 0 ~ function f{\I){t) !! !E,solutely continuous 

~ ~ interval € 11 t ~ T, ~ 

c. the function a" defined ~ 

1 
is £! :,lass L (O,T). 

For any int.eger If ~ 0 let wa( \I) denote the set of all 

functions f which are weakly singular of order v. For example if 

o < r < 1 and T. 1 then f{t). log t and g(t}. sin(t-r ) are 

in waCO). In these two cases qo{t,f} = -log t and ao(t,g) ~ t-r
• 

In general f(t) = t v- r , 0 < r < 1, is of class WS(v) so that each 

class WS(v) is not empty. The following lemma is an immediate con-

sequence of the definition. 

Lemma 1. If f € WS(v) 

o < t 11 T. 

on the interval 

Theorem 2. SUppose (A2) !! ~ !E!. .!2!! integer n. v+1 where 

\I ~ 1. !! f € wa( \I) ~ ~ error ~( f) obtained & applying 

the canpound ~ (N X R) satisfies ~ inequality 



(8) 

Proof. Write E. ~(r) in the form 

E • (f~f(t)dt - E ~=oBWjf(BXj») + (f~-Bf(t+B)dt 

- E:~Wjf(B(Xj+(k+1»»). 

',. 
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Apply Corollary 3. b to the first summand with n = v, q • 1 and to the 

second summand with n. '1'+1, q • 11 

I El 'B 'I'll KvlI L( 00) (f~l f( v) ( t>l dt) + 

BV+1IK II (fT-B,r<V+1)(t+B)\dt) 
'1'+1 L(co) 0 

Now use (7) and Lemma 1: 

Since Qv(t,f) is nonnegative and nonincreasing in t, then 

.; 
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Therefore (8) follows. The estimate (9) follows from (8) and the in

equality II~IIL(OII) :; (n+l)/nl Q.E.D. 

Example 2. Consider Jl t l / 2dt o approximated by the trapezoid rule. 

(The same example as at the end of section 2.) Then B. h, T • 1 • Nh, 

n = 2, v = 1 and 

It is easy to compute al(t) • (l/2)t-l /
2 

and J~al(t)dt. hl/
2

• 

Therefore (8) implies that 

Even less computation is required to see that (9) implies 

Either result shows that the error is or order ~(h3/2) as h. 

lIN .... O. The estimates in section 2 where O(h). 

Theorem 2 above cannot be applied if the integer n in 

hypotheses (A2) is equal to one but f € WS(v) for some integer v ~ 1. 

However such situations are already covered by Corollary 3 above. 

For example if the midpoint rule M is applied to f( t) • J"t, then 

by Corollary 3 the error is O( hl / 2). The reverse si tuat10n \I. 0 

arid n ~ 1 is more complicated. This situation 1s the topic of the 

next section. 
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4. Estimates when v. o. 
If f € WS(v) and v. 0, then t. 0 may be an unbounded 

point of f. In this Case the compound rule (N X R) need not be well 

defined. Even if (N X R) is well defined (e.g. if rule R 1s open 

at t. 0) the previous estimates do not apply. One simple method of 

handling both of these problems is to avoid the singularity at t. O. 

This idea leads to the following app~ox1mation rule: 

Let T. N.B where B > 0 and N > 1 is an integer. Com-

pute 

and let EA (f,N) = error. 

Rule RA will be called the method of "avoiding the singu

larity". This rule is the usual compound rule except that no attempt 

is made to approximate on the initial segment [O,B]. 

Theorem 3. Suppose (A2) !! true!.2!: n· 1. !! f E WS(O) then 

(10) 

!!! particular !! (A3) !!. ~ true, then 
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Proof. Define fB(t). f(t+B) on 0' t 'T-B. Then the error EA· 

EA(f,N) has the for.m 

where Ek(g) is error tor the usual canpound rule. App4r Corollary 

3.b with n. q • 11 

lEAl 'J~lt(t)ldt +BIIK111L(co/~-B(fB)'(t>ldt 

• J~lf(t)ldt + ~IK~IL(co)Jilf'(t)ldt. 

Use Lemma 1 and the definition (7): 

and 

Jilf.(t)ldt • ao(B,f) - ao(T,f) 

, (l/B)Ba
O

(B,f) , (l/B)J~OO(t,f)dt. 

This proves (10). 

If (A3) 1s also true, then IIK111L(co)' (1+1)/1! • 2. There

fore (11) follows immed1ate4r fran (10). Q.E.D. 
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Example 3. If f(t) • t-r , 0 < r < 1, then it is easy to compute 

( ) -r ( l-r) t( ) ~ t, f • t • Theorem 3 predicts EA· tJ Bas. B -t o. If t. 

t-rsin(t-V), where r,v>O and r+V < 1, then by Theorem 3 one has 

1-r-v ) -r ( ) at least EA. O(B ). If t(t • t sin log t where 0 < r < 1 

1-r then EA II O(B ) at least. 

5. Convolution Integrals 

Consider a convolution integral 

(12) I • J~f(T-S)g(S)dS • ~f(s)g(T-S)dS. 

Theorem 4. SUppose (A2) !!. ~ for n II v+1. In addition assume -
i. f € WS(v) ~ V ~ 1 ~ 

ii. g € CV[O,T] n CV+1(0,T] with g(v+1) € L1(0,T). 

Define F(t). f(t)g(T-t) ~ 0 S t S T. ~ L > 0 £!.! ~ ~ 

~ .£!!!!! functions 1 f(t)i, 1 g(t'l, \ g' (t)\, ••• , \ g(v) (t)J £!!!2.! 

interval 0 ~ t f! T. ~ ~ ~ ~(F) obtain ~ applying!!!!~

fOund ~ N X R ~ F satisfies the estimate 

\~(F)\ S LBV(IIKvIIL(ao) + IIKV+111L(ao)(J~av(tlf)dt 

+ B J~(lg(V+l)(s)\ + E ;.l(V;l)\f(j)(s)l)dS) 

where (~). kl/jt(k-j)t. 
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Proof. For any number s in the interval 0 < s 'f one has 

Tberefore if L is tbe bound defined above, then 

IF(Y+1)(s)1 ' L(t ~-o(Y;1)lf(Y+1-j)(s)I) + 

LI g( y+1) (T-s) I. 

This sbows tbat F € WS( Y) and 

Apply Tbeorem 2: 

1E.tt(F>I 'BY(IIKJI + IIKY+111)f~CXy(t,F)dt 

Ii LBV(IIKyll + II I\, +111 )(/~CXy(tl f)dt + 

/B/T(lg(V+1)(T_S)1 + t Y (Y+1)lr(3)(s)l)dsdt) 
o t 3-1 j • 

By nonnegat1vity and Fubin1's theorem 

_ ~ .:;-.f L: 

:. - - ~ 
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,BT ,TB . 
, JO/O( ••• )dSdt • JO/O(···)dtds 

• B~(18(V+l)(8)' + t ;.l(V;l)lt(j)(a)l)da. ~E.D. 

The next results tollow immediately tram Theorem 4. 

COrollary 4. SUppose ~ hypotheses .2! Theorem 4 ~!.:!!.. ~!:!!l 

number Hi >0 which satisties the estimate 

b ;Ii Mi I~C¥y(t,:f')dt. (0 < b ;Ii T) 

Then - where -

(14) 

+ t ~.l(V;lll t(.1>(8>1 )d8}. 

Corollary'. Suppose ~ bpotbeses ~ Theorem 4 !:!!!!!.. !5!: ~ 

inteer I > 0 !!!. B. Til ~ define 

~ Ej ~!!:!!!!!E!!! approximating 13 &!!!! canpound ~ 

(j X R). !!!!!!. 

i 
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~ M !!. ~ ccnstant defined !!l (14). ~ part1cular M !!. 2-

dependent 2! 1 ~ 1 ~2! j • 1(1)1. 

A similar analysis obtains wben v. o. 

Theorem 5. Suppose (A2) !!. ~!2!: n· 1. Assuae t E wa(O), I 

!! abs\J1utell continuous 2!!. 0 , t 'T !!!2. L !!! ~ 2!!. I g( t II 
tor 0' t 'T. Define 

pes) • t(s)g('l-s) (0 < t , T). 

~ ~!!!:2!: EA obtained & ap~ng ~ method avoiding ~ !!!,

gulBr1tl ~ F satisfies the estimate 

Proot. Since 1'(s) • tt(s)g(T-s)-t(s)gt(T .... l, then I' c waCO) aDd 

OIl 0 < 8 < T. I'Q ~1cular then 



Apply Theorem 3: 

I EAt , (1 + IIK11j)/~ao(t,F)dt 

, (1+1I~1I )(L/~aO(t, f) + I~/~'\)( 5, f)1 gt (T-s)i dsdt. 

Since '\)( t, f) is nonnegative and monotone in t, then 

1~/~ao(S,f):gt(T-S)ldsdt '/~'\)(t,f)/~lg'{T-S)ldSdt 

'(/~ao(t,f)dt){/~lgt{s)lds). Q.E.D. 

Corollary 6. Assume ~ hypotheses of Theorem 5. ~ ~ integer 

N > 0 ~ B = TIN ~ define 

Let EA{j) ~ ~ ~ obtained !!: approximating I j by ~ ~ 

RA• Then 

~ L !! ~ ~ defined !!: Theorem 5. (!!!.!! estimate !! ~
Eendent of N ~ j.) 
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,. Numerical Examples. 

The results in sections , and 4 were verified by numerica.l.ly 

integrating the function f(t). atasin(t-b ) for various values of the 

parameters Q, a and b with -1 < a < 1 and 0' b < 1. These CCll!.

putations were perfo~ed on a CDC 6600 computer at the Lawrence Radiation 

Laboratory, U. S. Atanic Energy Camrdssion. They were designed and im

plemented with the help of Dr. Fred Fritsch. 

Some cc:mputations were recClllputed in double precision. The 

_ numerical evidence obtained in this way s~sts that round off errors 

had no effects on the calculations over the full range of values of h. 

Experiments were made using both the metbod of "ignoring" tbe singu-

larity (see [3]) and the metbod of "avoiding' the singularity (section 

3 above). "Avoiding' is easier to handle tbeor~tically while "ignor-

ing' was a bit easier to program. Ignoring gives slightly better ac-

curacy for monotone integrands wbile avoiding may be a bit better for 

oscillating integrands. 

Table 1 contains results for tbe integral 

(15) 

for the value a = -1/4. -k 
Simpson's rule was employed witb h = 2 

and k. 1(1)1,. The constants C(h) in table 1 were computed by 

putting tbe error in the fo~ E(b) • C(b)h1+a• Then 

~ - ~- ......... ...-- ---~~~------ ----=-~--~--~ -=- ~ _ ......... _ -..4.L-' ...... _...."".. _.~ ____ - ......... ~~ __ 
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I 
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I 
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! 
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(1.6) 

Tbese values of C(b) appear to be converging as b -+0. As a second 

cbeck on tbe possible asymptotic fo~ of tbe error one can assume tbat 

E( h) • CObP (at least asymptoticall.y). Tben P may be calculated 

using tbe for,mulas 

(17) E~b) - E(2b) 
Q • E b!2) - E{bJ ' 

(one can also calculate Co in this manner.) Tbe last column in 

table 1 is canputed using (17). 

(Printer: Insert table 1 near bere) 

Table 1 indicates slow but monotone convergence. Tbe error 

appears to bave the fo~ E(b) = C(h)b3/ 4 
where C(b) -+ Co = .60996 ••• 

as b -+ o. This general bebavior is typical of tbe integrand (15) 

for 0 < I al < 1. For example if a·. 75 in (15) 8impson's rule 

gives mucb more rapid monotone convergence: 

8(2-5) = .99956, 

8(2-10 ) = .99999 88, 

8(2-15) = .99999 9997. 

In E(b) • C(h)hl •75 tbe corresponding values of C(b) are: 

. ' 

~. 



· . 

C(2-5 ) # -.1818, 

C(2-1O) .. -.2145, 

C(2-15) .. -.2265. 

The values of C(h) appear to be converging rather slowly. If 

a .. -.99 1n (~5) I then Simpson's rule hardly appears to converge 

at all. 

S{2-5) so .039, 

S{2-1O) = .012 , 

S(2-15) = .104. 

On the other hand the constant C(h) 1n the error term converges 

rapidly: 

C{2-~) .. -.994438, 

C(2-2) • -.994281, 

C(2-3) = -.994284, 

C(2-4) .. -.994238 

C{2-5) .. -.99423 596 

C(2-6) .. -.99423 534 

---- -- -- = ~~ '"""'" - - ----------=-=--= ~~~=--
-~-~ -_ .... ~.------~.;;=--- ..... -~--;;:: ~ 

-- --- -
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(Printer: Insert Table 2 near here) 

Table 2 contains results (using the trapezoid rule) tor 

the integral 

21 

where b= .25. Convergence is very slow and is not monotone. No 

asymptotic tor.mula E(h) ~ COhP is discernible using either ot the 

two tests (16) and (11). On the other hand tor the small value 

b = .1)1 convergence is monotone at a rate E(h) • C(h)h· 49 where 

C(h) is a slowly varying tunction ot h; 

C(2-1) • 1.286, 

C(2-5) • 1.246, 

C(2-lO) • 1.228. 

At the opposite extreme b = .49 convergence is very slow 

T(2-5) •• 9411, 

T(2- lO ) •• 9912, 

r(2-15) 11 1.0232, 

-.--- - ~--~ ----~~-~-=~ -~~~~ 
~. - ""-- ~~.-- ~~~,~ ~~:.: ~~ 

-- --
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convergence is not monotone and no approximate asymptotic error for-

mula is apparent. 
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Table 1: 

k Error C P 

1 -.36655 -.61645 

2 -.21663 -.61271 

3 -.12847 -.6lll2 .76609 

4 -.07631 -.6ro45 .75692 

5 -.04535 -.6ro16 .75293 

6 -.02696 -.61005 .75123 

7 -.01629 -.61000 .75052 

8 -.00953 -.60997 .75022 

9 -.00567 -.60995 .75009 

10 -.00337 -.60996 .75004 

11 -.00200 -.60996 .75002 

12 -.00119 n .75001 

l3 -.00071 n .75000 

14 -.00042 n n 

15 -.00025 n " 

• 
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k 2k X T 

1 .8666 6 1.5951 11 L,103 

2 1.1810 7 1.5696 12 L5211 

3 1.3948 8 1.5319 l,3 L5157 

If. 1.5252 9 1.5034 14 L5102 

5 1.5867 10 Llf}75 15 1.5164 
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